Re-evaluation of all-plastic organic dye laser with DFB structure fabricated using photoresists

نویسندگان

  • Naoto Tsutsumi
  • Saori Nagi
  • Kenji Kinashi
  • Wataru Sakai
چکیده

Organic solid-state lasers (OSSLs) with distributed feedback structures can detect nanoscale materials and therefore offer an attractive sensing platform for biological and medical applications. Here we investigate the lasing characteristics, i.e., the threshold and slope efficiency, as a function of the grating depth in OSSL devices with distributed feedback (DFB) structure fabricated using photoresists. Two types of photoresists were used for the DFB structures: a negative photoresist, SU-8 2002, and a positive photoresist, ma-P 1275. The DFB structure was fabricated using a Lloyd-mirror configuration. The active layer was a rhodamine 6G-doped cellulose acetate waveguide. The threshold for the first order mode (m  = 1) was lower than that for the second and third order modes (m = 2, and 3). A low threshold of 27 μJ cm-2 pulse-1 (58 nJ) was obtained using SU-8 2002, with m = 1. The slope efficiency was evaluated as a function of grating depth for each mode and increased as the grating depth increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-area organic distributed feedback laser fabricated by nanoreplica molding and horizontal dipping.

The fabrication of visible wavelength vertically emitting distributed feedback (DFB) lasers with a subwavelength grating fabricated by a replica molding process and an active polymer layer printed by a horizontal dipping process is reported. The combined techniques enable the organic DFB laser to be uniformly fabricated over large surface areas upon a flexible plastic substrate, with an approac...

متن کامل

Vertically emitting, dye-doped polymer laser in the green (k 536 nm) with a second order distributed feedback grating fabricated by replica molding

Lasing in the green from a distributed feedback (DFB) structure, based upon a second order grating fabricated by replica molding in a dye-doped UV curable polymer, has been demonstrated. For a Bragg grating having a periodicity and depth of 360 ± 2 nm and 78 ± 5 nm, respectively, a coumarin 540-polymer laser operates at 535.6 nm, which is in agreement with calculations of the photonic band diag...

متن کامل

Organic Solid-State Tri-Wavelength Lasing from Holographic Polymer-Dispersed Liquid Crystal and a Distributed Feedback Laser with a Doped Laser Dye and a Semiconducting Polymer Film

Organic solid-state tri-wavelength lasing was demonstrated from dye-doped holographic polymer-dispersed liquid crystal (HPDLC) distributed feedback (DFB) laser with semiconducting polymer poly[-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene-vinylene] (MEH-PPV) and laser dye [4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran] (DCM) by a one-step holography technique, which centered a...

متن کامل

Organic semiconductor distributed feedback laser pixels for lab-on-a-chip applications fabricated by laser-assisted replication.

The integration of organic semiconductor distributed feedback (DFB) laser sources into all-polymer chips is promising for biomedical or chemical analysis. However, the fabrication of DFB corrugations is often expensive and time-consuming. Here, we apply the method of laser-assisted replication using a near-infrared diode laser beam to efficiently fabricate inexpensive poly(methyl methacrylate) ...

متن کامل

Pump spot size dependent lasing threshold in organic semiconductor DFB lasers fabricated via nanograting transfer.

Optically excited organic semiconductor distributed feedback (DFB) lasers enable efficient lasing in the visible spectrum. Here, we report on the rapid and parallel fabrication of DFB lasers via transferring a nanograting structure from a flexible mold onto an unstructured film of the organic gain material. This geometrically well-defined structure allows for a systematic investigation of the l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016